imperva

Unveiling Unseen Requirements: Empowering Organizational Security & Control from the Core

Shailes Nanda, CISSP – Principal EMEA Security Engineer shailes.nanda@imperva.com

TODAY'S APPLICATIONS & APIS REMAIN UNDER CONSTANT ATTACK

DDoS Attacks

LAYER 3/4 **UDP floods** NTP amplification **DNS** amplification Tsunami SYN flood CharGEN amplification Memcache amplification SSDP amplification **SNMP** amplification **GRE-IP UDP floods** CLDAP attacks ARMS (ARD) Jenkins **DNS Water Torture** SYN floods TCP RST floods SSL **Negotiation floods** TCP connect floods Fragmented attacks

TCP ACK floods

CoAP

WS-DD

NetBIOS

DDoS Attacks

LAYER 7

NS Query floods SlowLoris attack HTTP(S) GET request floods HTTP(S) POST request floods SMTP request flood

OWASP Top 10 Attacks

Injection

Broken authentication Sensitive data exposure

XML external entities (XXE)

Broken access control Security misconfiguration

Cross-site scripting (XSS)

Insecure deserialization

Using components with known

vulnerabilities

Insufficient logging & monitoring

OWASP Automated Threats

Account Aggregation Fingerprinting Account Creation Footprinting

Ad Fraud

Scalping

CAPTCHA Defeat Card Cracking

Scraping Skewing

Carding Cashing Out

Sniping Spamming

Credential Cracking **Credential Stuffing**

Token Cracking

Denial of Inventory

Vulnerability Scanning

Denial of Service

Expediting

900 Microservices & APIs

000

Network

Public Facing

Internal

Mobile

OWASP API Top 10 Attacks

Broken object level authorization Broken user authentication Excessive data exposure Lack of resources & rate limiting Mass assignment

Injection Improper assets management Insufficient logging & monitoring

Client-side Attacks

Formiacking

chain attacks

Credit card skimming Card skimming **Digital Skimmers** Magecart JavaScript supply

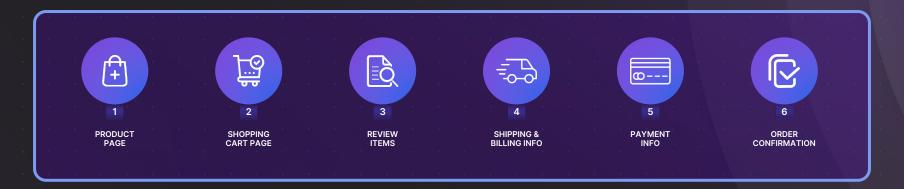
Serverless Attacks

Event injection Denial of wallet **Business logic** manipulation

Supply Chain & **Zero Day Attacks**

Insider threats Unknown attacks Internal facing apps

TECHNIQUES

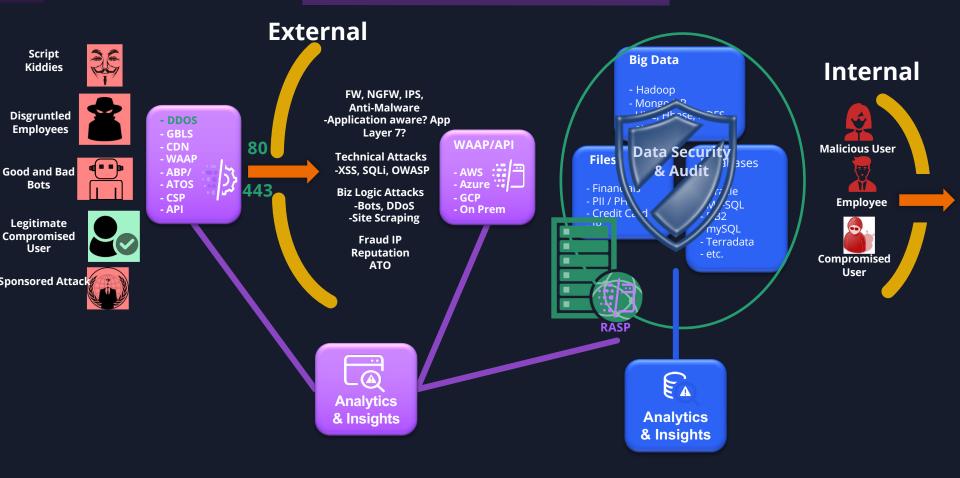

Clickjacking HTTP Response **Splitting HTTP Method Tampering** Large Requests **Malformed Content** Types Path Traversal Unvalidated Redirects **Software Supply Chain Attacks**

INJECTIONS

Command Injection Cross-Site Scripting Cross-Site Request Forgery CSS & HTML Injection Database Access Violation

Broken function level authorization Security misconfiguration

Protecting required for business logic attacks


What is business logic?

Business logic is the custom rules or algorithms that handle the exchange of information between a database and user interface

Business logic vulnerabilities are flaws in the design and implementation of an application that allow an attacker to manipulate legitimate functionality to achieve a malicious goal

Evolving Critical Infrastrucure Protection

The Imperva Difference – App Security + Delivery

Before:

- Used multiple vendors for security, bot mitigation, DDoS and CDN.
- Required application delivery rules that respond rapidly to market demands and as part of DevSecOps.
- High cost to security operations due to maintaining multiple vendors solutions.
- Limited capability to manage changes due to time delay in activating changes.

After:

- Imperva Cloud Application Security provides a vertically integrated solution that unify capabilities to address all use-cases with single onboarding.
- Imperva Cloud Application Security enforced policy in real-time enabling advanced automation to drive more value in operations.
- Unique single stack approach enabled 90% savings on content served (bandwidth) by offloading it through Imperva Cloud Application Security CDN.

Proprietary and confidential. Do not distribute.

The Imperva Difference – Data Security

A global bank improved their ability to detect, respond, and recover from potential anomalies while meeting their NIST–based compliance requirements.

The scope of the analysis was ~7.2B bank transactions during a 60 day period.

Before: Native Audit & Splunk

- 85,000 incidences in 60 days
- ~10,000 alerts per week
- 2 FTE
- 10% of alerts investigated
- 0 significant incidents discovered

After: Imperva

- 723 incidences in 60 days
- ~60 incidents per week
- 2 FTE
- 100% of incidents investigated
- 6 significant incidents discovered

Results

- Machine learning no tuning
- Manageable # of alerts
- Equivalent FTE
- All incidents investigated
- 914k DB records accessed by 1 person

Thank you